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A B S T R A C T

In this paper, we construct an extended SIR model with agents optimally choosing outdoor ac-
tivities. We calibrate the model and match it to the data from the United States. The model
predicts the epidemic in the United States very well. Without government intervention, our si-
mulation shows that the epidemic peaks on 22 March, 2020 and ends on 29 August, 2022. By the
end of the epidemic, more than 21 million people will be infected, and the death toll is close to
3.8 million. We further conduct counterfactual experiments to evaluate the effectiveness of dif-
ferent polices against this pandemic. We find that no single policy can effectively suppress the
epidemic, and the most effective policy is a hybrid policy with lockdown and broadening testing.
Lockdown policy alone is ineffective in controlling the epidemic as agents would have optimally
stayed at home anyway if the infection risk is high even without a lockdown. Broadening testing
solely will accelerate the return to normal life as there are fewer infected people hanging around.
However, as people do not internalize the social costs of returning to normal life, the epidemic
could get even worse. Increasing medical capacity without any other measures only has tem-
porary effects on reducing the death toll. We also find that random testing is too inefficient unless
a majority of population is infected.

1. Introduction

Life is no longer the same for an American since the first case of COVID-19 recorded on 22 January, 2020. The confirmed cases
have skyrocketed with more than a million American tested positive and tens of thousands of lives being taken away in about three
months. States after states have issued the state of emergency order. Following the footsteps of many Asian and European countries,
cities are locked down to tackle the virus. With such a strong measure on limiting the freedom of people, a question naturally arises: Is
the measure effective and necessary?

One challenge for tackling COVID-19 is the high proportion of no symptoms or mild cases (or long incubation periods) which
could continue spreading the virus. Broadening testing will keep people informed with their truth health status. This works together
with an effective quarantine order could effectively lower the unaware infected people hanging around in the community and
slowdown the spread. The strategy has been used by many countries without a lockdown.

The COVID-19 has already become a pandemic, but countries around the world are posing substantially different death rates. The
case fatality rates vary from more than 10% in Italy and the United Kingdom to less than 1% in Singapore. The number is about 6% in
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the United States as of 8 May, 2020. One possible explanation to the large discrepancies in death rates is the collapse of healthcare
systems in many countries. Increasing medical capacities, such as building temporary hospitals and producing emergency ventilators,
are particularly important in lowering the death rates. The overall effect of medical capacity to the epidemic is another issue worth
studying.

In this paper, we construct an extended SIR model and match the model to the available data in the United States. We simulate the
benchmark model under the situation of no government intervention. By 29 August, 2022, more than 21 million of people will be
infected in the whole epidemic and the death toll is close to 3.8 million. We then perform experiments to investigate the effects of
different policies against the epidemic, including lockdown, broadening testing, increasing medical capacity and a hybrid policy
combining lockdown and broadening testing. We find that no policies alone can successfully tackle the epidemic. Locking down only
results in delaying the peak and the end of the epidemic because a second wave of infection will quickly emerge after reopening.
Broadening testing solely lowers the risk of infection because fewer infected individuals are hanging around. However, people do not
internalize the social costs of spreading the virus, and will choose to return to normal life too soon, leading to a worsened epidemic.
Increasing medical capacity alone lowers the costs of infection initially. However, similar to broadening testing, more people will
hang around, and the resulted increases in infection and medical demand will erase the gain of an enlarged medical capacity. In the
end, we experiment on a combination of policies with lockdown and broadening testing and find that such policy successfully limits
the spread of the virus. This is because when people do not internalize the social costs of spreading the virus, lockdown can effectively
prevent unconfirmed infected cases from returning to normal life and spreading the virus further. Our simulation shows that the
hybrid policy stops the epidemic completely.

As the pandemic of COVID-19 is still ongoing, the literature is rapidly growing. This paper is closely related to papers using a
standard SIR model to study COVID-19. For example, Alvarez et al. (2020) study the optimal lockdown policy.
Eichenbaum et al. (2020) extend the standard SIR model to study the economic interactions with the spread of virus.
Garibaldi et al. (2020) focus on the matching mechanism in the SIR model. Berger et al. (2020) extend an SIR model to SEIR in order
to study the effect of testing and quarantine. Other papers include Krueger et al. (2020), Aum et al. (2020), Toda (2020),
Favero (2020), Gonzalez-Eiras and Niepelt (2020), Bethune and Korinek (2020). Lockdowns around the world also raises lots of
research interests in working from home and people being affected by the stay-at-home order. Dingel and Neiman (2020) estimate
that 34% of US jobs can be performed at home. Using American Time Use Survey, Alon et al. (2020) analyze the sectors and groups of
people that are most affected by the stay-at-home order. Other works examining different countries include Saltiel (2020),
Gottlieb et al. (2020), Delaporte and Pena (2020).

2. Model

2.1. Agent

Consider an infinite-horizon model with a continuum of agents. In each period, all agents are endowed with one unit of time and
allocating their time to working away from home l, working from home lh, and outdoor consumption co. Agents receive utility from
two consumption goods - indoor consumption ci and outdoor consumption co. Let u c c( , )t

i
t
o be the period utility at time t. The budget

constraint and time constraint at time t are given respectively by
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where wt and wt
h are the wages for working away from home and working from home, respectively. τt is a direct transfer. Hence,

outdoor consumption costs time while indoor consumption is bought from the market.
We extend the SIR model and assume that there are five possible states: susceptible, infected, confirmed with mild symptoms,

confirmed with severe symptoms, and recovered.

2.1.1. Susceptible
Agents are healthy in the susceptible state and choose ci, co, l, lh to maximize their lifetime utility. However, outdoor consumption

and working away from home could lead to infectious exposures. Assume that an agent has a probability p(co, l, η) of being infected,
where η is the proportion of infected people among people who are hanging around by choosing co>0 or l>0. If an agent is infected
by the virus, he will enter the infected state.

2.1.2. Infected
In the infected state, an agent acts like a susceptible agent. This could be interpreted as the incubation period, the mis-

interpretation of a common cold or the waiting time for the test results. The agent in this phase is assumed to be unaware of being
infected and will share the same decision rules as a healthy agent. However, with a probability ψ, the agent will be tested positive
with the disease and become a confirmed case. A confirmed case has probabilities λ to have mild symptoms and 1 to have severe
symptoms. With a probability γ, the infected agent will recover without being tested positive.

2.1.3. Confirmed with mild symptoms or severe symptoms
For confirmed cases with either mild or severe symptoms, working ( = =l l 0h ) or hanging around (co) are prohibited, and hence
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the agents are effectively quarantined. For mild cases, agents will recover with a probability of γ in each period. For severe cases,
there is a probability γs (γs < γ) of recovery and a probability π(MD) of death, where MD is the medical demand. If the medical
demand increases relative to the capacity of the health care system, mortality rate increases. Hence, we assume π′(MD)>0.

2.1.4. Recover
This state includes agents who are recovered from the states of infected, confirmed with mild symptoms and confirmed with

severe symptoms. In this state, agent is immune to infection with the same virus. However, since little has been known for the nature
of COVID-19 regarding whether an agent will be infected again, we assume that there is a probability ζ that an agent will be in the
susceptible state again.

2.2. Production technology

The production takes both types of labor as inputs, l and lh. We assume that the marginal product of labor is always larger for
working away from home, i.e. > ,dY

dL
dY
dLh where Y, L, Lh are the aggregate output, the labor away and the labor at home respectively. As

a result, a worker will always choose to commute to work if there are no risks of being infected. To be specific, we assume

= + +Y A L L BL( ) .h

Hence, =w At
h and = +w A BLt t

1 in equilibrium. Profit is being allocated evenly in the population every period through the direct
transfer τt.

2.3. Demographic evolution

We will specify the transition of states in this section. Assume that X ,t
s X ,t

i X ,t
m X ,t

s Xt
r and Xt

d be the total number of agents in state
of susceptible, infected, confirmed with mild symptoms, confirmed with severe symptoms, recovered and death at time t respectively.
The evolutions are given by
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Also, the infected hangout ratio ηt is given by
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Since all the confirmed cases are being prohibited from hanging around until they are recovered, the virus is spread mainly through
those unaware infected agents.

2.4. Dynamic program

Let U be the value function of a susceptible agent, and let V be the value function of an infected agent. The value of being a
susceptible agent is given by
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where β is the discount factor, and c̄t
o and l̄t are the exogenous lockdown parameters. Without lockdowns, = =c l¯ ¯ 1t

o
t . Let c *,t

i c *,t
o l *,t

l *t
h be the solution in the above maximization.
Since the agent is unaware of being infected, the decision rule is the same as a susceptible agent. The value of being an infected

agent is given by

= + + ++ + +V u c c W R V( *, *) [ (1 ) ]t t
i

t
o

t t t1 1 1

where W is the value function of being tested positive with the disease and R is the value for agents who have recovered from the
disease.
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For agents who are diagnosed with the disease, let Wm and Ws be the value functions for having mild and severe symptoms
respectively. We have
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= + +
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where vd is the value of death, which we will normalize to 0. As agents are restricted from working or outdoor consumption after
being tested positive, they can only consume the transfer received until they are recovered because there is no saving in the model.

Finally, let R be the value of recovered agent and is given by

= + ++ +R u c c U R( *, *) [ (1 ) ]t t
i

t
o

t t1 1

Again, agents are unsure whether he is susceptible to the disease or not, and lots of people might not even realize that they have
caught the disease as people recover from the disease before they are tested. We therefore assume that agents in this state follow the
decision rule of that for a susceptible agent as well.

3. Calibration

In this section, we calibrate the model to match the pandemic of COVID-19 in the United States. We first divide the parameters
into different categories and discuss the setting of the functional forms used. We then describe the data moments used in the
calibration.

3.1. Parameters

3.1.1. Preference
One model period is assumed to be one day. The discount factor β is set as 0.961/365. Assume that the period utility is given by a

standard CES utility

= +u c c c µ c( , )
1 1

i o
i o1 1

Although the intertemporal marginal rate of substitution tends to be small in the macroeconomic literature, we set = 0.5 as the
model period is only one day. The substitutability of consumption between today and tomorrow should be much higher than the
consumption between today and next year when the model period is one year. The remaining parameter left to be calibrated is μ.

3.1.2. Labor market
The three parameters related to the labor market are A, B and α in the production function. Without loss of generality, we

normalize =A 1. Also, we set = 0.7 as that for a standard Cobb-Douglas production function.2 Since there exist universal transfers
in the model, we manage to match the transfers with the benefits observed in the data. According to the United States Department of
Labor, the average weekly benefit in the second quarter of 2019 is $366.53 while the average weekly wage in the same period is
$1106. Hence, we set =wl/ 0.3314. We further normalize the total initial population to one and target =l 0.5, as discussed in the
next section, we have =B 0.9005.

3.1.3. Lockdown
The lockdown parameters c̄o and l̄ are the parameters that we will experiment with. The default value is one, representing that

there are no restrictions in outdoor consumption and working away from home.

3.1.4. Contagious parameters
In the model, p(co, l, η) governs how the virus is being transmitted. We specify the functional form as:

= +p c l c l( , , ) ((1 ) ) .o o

Under this specification, =plim 00 and the infection probability goes to zero when no infected agents are hanging around. ν is the
relative exposure parameter between working away from home and outdoor consumption. Eichenbaum et al. (2020) estimate that
16% of transmissions are related to consumption while 17% of transmissions are related to work. Consistent with their findings, we
set = 0.5, representing equal probability of exposure in the benchmark. A sensitivity test will be provided in the next section. The
remaining two parameters χ and κ will be calibrated by matching the United States spreading data.

3.1.5. Disease
Finally, the parameters affecting the severity and the number of cases of the disease include ψ, λ, γ, γs and ζ. We also need to

specify the mortality π(MD). According to Guan (2020), the incubation period has a median of four days. We assume that it takes an

2 Although α is not the labor share under the current setting, we use the same α to keep the curvature of the production function.
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extra two days between the appearing of the first symptom and the time of being tested positive and set = 0.11.3 According to
Wu and McGoogan (2020), about 81% of 44,415 confirmed cases show mild symptoms, 14% show severe symptoms and 5% are
critical. Hence, we set = 0.81. For the mortality function, we assume that

= +

= +
( )MD e

MD X X

( ) (1 ) 1 ,

(1 ) ,
s

MD

m s

where δ is the basic fatality rate of the disease. The death rate will increase if medical demand, MD, increases relative to the capacity
of the health care system, ω. We interpret ω as the medical capacity of the health care system which includes available physicians,
intensive care beds, ventilators, and etc. We assume medical demand MD to be a weighted average of mild and severe cases with a
weight of θ< 0.5 for mild cases. Since the epidemic is still on going, the recovery and fatality statistics are very likely to be biased at
this point. Therefore, it is better to leave these parameters to be calibrated by matching the observed data moments. Finally, as
mentioned in the previous section, ζ is a parameter we will experiment on. We set ζ at zero in the benchmark. That is, in the
benchmark model, once people have caught the disease, they are immune from the disease forever.

In all, there are eight parameters remained to be calibrated, including μ, χ, κ, γ, γs, θ, δ and ω.

3.2. Moments

We focus on matching the observed confirmed cases, deaths, and cases of recovery since the first case was recorded in the United
States.4 Also, as there are no lockdowns in the benchmark model, it is more suitable to fit the observed trend before the im-
plementation of any lockdown measures within the United States. To this end, the calibration periods ranges from 22 January, 2020
when the first case was recorded to 18 March, 2020 when California announced the first mandatory stay-at-home order on 19 March,
2020.5 We also set the labor hours at 0.5 before the epidemic starts. This number suggests that individuals spend half of the non-
sleeping hours on working and the other half on outdoor leisure.

4. Simulation

Although it is a more common practice to simulate the decision rules under rational expectation, people could hardly foresee the
future under such a rapid changing environment, including the virus spreading and the sudden policy changes. We thus simulate the
time path by assuming that agents make decisions based on what they observe today and stay at the current level. The simulation
starts at a steady state of no infection. We then randomly let one individual be infected, and the virus starts to spread in the economy
from that point on. We define the period to be 22 January, 2020 when there is exactly one case (or more than one cases) being
confirmed with COVID-19.6 We report in Table 1 the 8 parameters that are used to match the observed trend in the data before 19
March, 2020.

At the first glance, the recovery probabilities γ and γs are low while the death probability is high compared to other studies.
Atkeson (2020) and Alvarez et al. (2020) both follow Wang (2020) to use a recover probability of 1/18. However, we doubt that the
number is highly biased upward.7 Also, as the United States recorded only 105 cases of recovery from 7783 confirmed cases on 18
March, 2020, it is not surprising that γ and γs are so small. As for the death rate, a daily mortality rate of 2.1% is high. However, recall
that only agents with severe symptoms die. The true mortality rate is thus much lower as there are only 19% out of the confirmed
cases with severe symptoms. Moreover, lots of agents recovered directly without being tested.

We plot in Fig. 1 the calibration results with three panels exhibiting the simulated confirmed cases, death tolls and recovery cases
respectively.8 The blue line shows the observed data while the red line shows the model prediction. The model matches the United
States experiences before 19 March, 2020 very well. We now proceed to model predictions based on the benchmark calibration from
19 March, 2020 onwards.

The total number of confirmed cases of COVID-19 has surged since 18 March, 2020. More than 1.2 million cases were recorded as
of 6 May, 2020. The death toll has also raised above 70 thousand. Without any government intervention, our model predicts similar
severity of the epidemic. Fig. 2 shows our simulation results for 200 days since 22 January, 2020, that is, 8 August, 2020. Observing

3 This includes the time delay in misinterpreting the symptoms as a common cold or flu, the waiting time for being tested, and the time waiting for
the test results. Hence, this extra delay can be reduced if people are more alert to the virus, the tests are more available to the public, and rapid
COVID-19 tests are developed and become available.
4 The data are taken from Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE).
5 Although the White House advises the public to avoid groups of more than 10 people on 16 March, 2020, it is not a strict restriction. We

therefore simply bypass it.
6 Notice that the first confirmed individual might not be the initially infected person.
7 Wang (2020) argue that the average duration of the disease is 18 days by assuming a 5.2 days of incubation period plus an average hospita-

lization period of 12.39 days. However, the 12.39 days of average hospitalization period is taken from a study of Chen (2020). Chen (2020) study 99
patients who were hospitalized between 1 January to 20 January, 2020 in Wuhan. By 25 January, 2020, 31 of the 99 patients were discharged, 11
died and 57 were remained in hospital. The average hospitalization period is thus calculated from the 31 patients who are discharged.
8 It is note that recovery cases represent only those who have recovered after being tested positive. Those who recovered before being diagnosed

with the disease are not included, so that the statistics reported here are comparable with the data.
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the top-left panel, the model predicts the confirmed cases very well, especially the slow down after April. The model slightly un-
derestimates the severity of the epidemic. However, it successfully predicts that the spread of the virus has become more stable after
April. For the death toll and total recovery, the model overestimates the death rates while underestimates the recovery rates. This is
not surprising as the calibration target is the trend when COVID-19 first spread. Lots of research has been done on the virus since then
and we can expect the recovery rates to go up and the death rates to go down as we are more capable of tackling the virus.

One interesting fact is that the benchmark simulation assumes no government interventions. Without any lockdown, the model
suggests that the virus spread will be more stable after April. The reason is that in view of the risks of being infected, people are
optimally reducing outdoor consumption and the working time away from home. Fig. 3 shows the decisions for time use. The model
suggests that the risks of infection are severe enough to give people incentives to work from home since 21 March, 2020.

Finally, Fig. 4 plots the infection probability in each day. The model shows that the infection probability peaks on 21 March, 2020

Table 1
Parameter values.

Parameters Value

μ 1.2231
κ 1.1022
χ 3.2418
γ 0.005043
γs 0.002011
θ 0.2108
δ 0.02100
ω 0.0001753

Fig. 1. Calibration Results: Model vs Data, 22 January, 2020 to 18 March, 2020.
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Fig. 2. Benchmark Simulation: Model vs Data, 22 January to 8 August, 2020.

Fig. 3. Benchmark Simulation: Time Allocation, 22 January to 8 August, 2020.

W.L. Ng Journal of Macroeconomics 65 (2020) 103230

7



and starts to decrease as people rapidly reduce outdoor consumption and start to work from home. Another interesting statistic is the
infected hangout ratio, ηt. In the model, when an agent is tested positive for COVID-19, they are quarantined. Hence, the infected
agents hanging around are those who are unaware of the fact that they are infected. Fig. 5 shows the simulated infected hangout
ratio. Both statistics suggest that the speed of the virus spread is growing rapidly during late March until people decide to stay home
to avoid the risk of being infected. The spread of the virus is stabilized since then.

5. Counterfactual experiments

In this section, we are interested in three policy experiments. First, we would like to study how effective lockdown is on limiting
the spread of the virus. Second, the main channel of transmission of the virus is the unaware infected people with very mild or no
symptoms. Broadening testing and quarantining confirmed cases as soon as possible is a way of tackling the epidemic. We thus would
like to investigate the effectiveness of policies related to testing. Third, as one suggested reason of the high fatality rate of COVID-19
is the collapsed of health care system, we would like to know if increasing medical capacity could lower the death toll.

To compare the effects of different policies, we define a peak of an epidemic as the point with the largest increment of infections
and the end of an epidemic as the total number of infected population has reached its peak under non-binding policy restrictions.9 We

Fig. 4. Benchmark Simulation: Infection Probability, 22 January to 8 August, 2020.

Fig. 5. Benchmark Simulation: Infected Hangout Ratio, 22 January to 8 August, 2020.

9 With policy such as lockdown, the total number of infected population will decease temporarily. However, the number will start to rise again
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will compare the timing of peak and the end of the epidemic, the number of infected cases, and death toll at the end of the epidemic
under different policies. We will also compare a normal life index (NLI), constructed by +l c ,o to evaluate how much people are
returning to their pre-epidemic life. In the benchmark simulation, the peak of the epidemic is on 22 March, 2020 and the end of the
epidemic is on 29 August, 2022. Total infection cases exceed 21 million and the death toll is closed to 3.8 million. The normal life
index is 0.181 in the end of the epidemic.

5.1. Lockdown

The first experiment is to examine the effect of a lockdown. From the benchmark simulation, it is obvious that a partial lockdown
( >l̄ 0 or >c̄ 0) would be ineffective as people are optimally reducing their consumption on outdoor activities and switching to work
from home. Here, we will examine three dimensions of possible lockdown: (1) the duration of lockdown, (2) the selective lockdown
and (3) the reopening scheme.

5.1.1. Duration of lockdown
In this part, we study the effects of different lengths of lockdown. Assume that the government decides a complete lockdown

( = =l c¯ ¯ 0o ) on 19 March, 2020. Fig. 6 shows the effects of a lockdown of 30 days, 60 days and 90 days. In all cases, locking down
simply delays the epidemic. Once the restriction is lifted, a second wave of virus starts to spread. This fact is more clear when we
compare the effects of different policies in Table 2.

Fig. 6. Simulation with different lengths of lockdown, 22 January to 31 December, 2020.

(footnote continued)
when the restriction is lifted. Hence, it is important to emphasize on the peak when people are not restricted by any policies.
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5.1.2. Selective lockdown
Fig. 7 compares the effects of locking down both outdoor consumption and working away from home, locking only outdoor

consumption, and locking only working away from home for 30 days. As expected, the effect is very small if we do not shutdown both
outdoor consumption and working away from home.

5.1.3. Reopening scheme
Finally, we would like to know the effects of different reopening policies. We consider four possible schemes. First, we examine an

immediate reopening with all restrictions lifted. Second, we consider a phased reopening by relaxing the labor supply restrictions first

Table 2
Summary - lockdown.

Peak End Infection (End) Death Toll (End) NLI (End)

Benchmark 22-Mar-20 29-Aug-22 21,171,782 3,797,870 0.181
Lockdown 30 days 4-May-20 10-Oct-22 21,199,163 3,802,764 0.181
Lockdown 60 days 23-Jun-20 29-Nov-22 21,188,555 3,800,828 0.181
Lockdown 90 days 31-Aug-20 7-Feb-23 21,204,736 3,803,754 0.181
Lockdown co 22-Mar-20 29-Aug-22 21,168,294 3,797,236 0.181
Lockdown l 19-Apr-20 7-Sep-22 21,197,699 3,802,546 0.181
Phased Reopening 3-May-20 10-Oct-22 21,193,463 3,801,729 0.181
Gradual Reopening 23-May-20 29-Oct-22 21,200,929 3,803,069 0.181
Endogenous Reopening 26-Jul-20 22-Dec-22 21,207,973 3,804,302 0.181

Fig. 7. Simulation with selective lockdown, 22 January to 31 December, 2020.
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and extending the outdoor consumption restrictions for another 30 days. Third, we consider a gradual reopening scheme with the
lockdown parameters l̄ and c̄o increasing by 0.25 for every 30 days. Finally, we consider an endogenous reopening scheme where we
assume that l̄ and c̄o increase by 0.1 if the number of newly confirmed cases decreases for 7 consecutive days. The results are shown in
Fig. 8.

5.1.4. Short summary
Overall speaking, the effect of lockdown is to delay the epidemic. Table 2 shows the results of all lockdown experiments.

Comparing with the benchmark simulation, all the lockdown experiments point that temporary lockdown will only delay the spread
of the virus. The spread of the virus will quickly catch up once the lockdown is over. The reason is simple. If there are infected agents
hang around after the lockdown, it will create another wave of spreading. In all cases, the economy will arrive at the same long run
equilibrium when people optimally perform social distancing with the normal life index stays at 0.181.

5.2. Broadening testing

As mentioned before, the main channel of transmission of the COVID-19 virus is from unaware infected people with no or mild
symptoms. In this section, we provide experiments on policies of broadening testing which aim at reducing the number of infected
individuals hanging around. We consider two possible policies: (1) rapid and target testing, and (2) random testing.

5.2.1. Rapid testing and target testing
Developing rapid testing and improving identification for high-risk individuals could limit the length in the unaware infected

stage. For example, immediate testing on other family members when a family member is confirmed even they are showing no

Fig. 8. Simulation with different Reopening Schemes after Lockdown, 22 January to 31 December, 2020.
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symptoms can effectively lower the risk of community transmissions by identifying potential cases earlier. In the model, the policy
goal is to shorten the length of the infected state. In the benchmark calibration, the median of switching from infected state to
confirmed state is assumed to be 6 days, which is about 9 days on average. We will experiment ψ with an average duration in the
infected state between 4 days to 7 days, that is = {1/4, 1/5, 1/6, 1/7}. Fig. 9 plots the differences in total infection and death toll
relative to the benchmark. Interestingly, although a larger ψ initially reduces the total infection, the situation gets worse as time goes
by with both total infection and death toll rise above the benchmark level. When we look at the NLI as shown in Fig. 10, people are
moving closer to the normal life. As rapid and target testing permanently lower the risk of exposure to the virus, people optimally
increase outdoor consumption and return to normal workplace. However, people do not internalize the probability of spreading the
virus. As a result, increases in ψ worsen the long run epidemic equilibrium while people enjoy normal life more.

5.2.2. Random testing
Many countries have started to expand the scope of testing by randomly sample residents for COVID-19 testing. The result could

be informative for policy makers to know the severity of the epidemic. In this section, we study the effects of such a policy. Suppose in
the beginning of each period, M people who are not in the confirmed state are randomly drawn for testing. An agent in the infected
state, if selected, will receive a positive test result and immediately move to the confirmed state. As of 22 May, 2020, the United
States has more than 13 million tests reported and the daily test number is close to 400 thousand. The average number of tests
between 19 March to 22 May, 2020 is about 200 thousand. We experiment =M 200, 000 and a 10 times expansion of random testing,

=M 2, 000, 000. The results are very close to the benchmark with the NLI increasing slightly to 0.191 under =M 2, 000, 000.
Essentially, random testing is too inefficient unless a majority of population is infected. It thus remains a tool for policy makers to
understand the severity of epidemic rather than a tool for tackling the virus.

Fig. 9. Simulation with different ψ, 22 January to 31 December, 2020.

Fig. 10. Normal Life Index ( +l co) under different ψ, 22 January to 31 December, 2020.
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5.2.3. Short summary
In short, broadening of testing initially lowers the risk of infection as fewer infected individuals hang around spreading the virus.

As people increase outdoor consumption and return to normal work with a lower infection risk, total infection and death toll end up
even higher when people do not internalize the social effect when they are moving towards normal life. Table 3 summarizes the
results.

5.3. Medical capacity

As the collapse of a health care system could lead to a dramatic increase in death rates, it would be of interest to examine how
medical capacity affects the results. We experiment it by doubling ω after the calibration periods and find that the results are very
similar to the benchmark simulation. As shown in Fig. 11, although an increase in medical capacity lowers immediate death toll, it
also lowers the penalty of being infected. In response, people optimally reduce the time staying at home, leading to an increase in
infection cases. This then further increases the demand of medical services. As a result, there are no long run effects as shown in
Table 4.

5.4. Hybrid policy

All the simulation results above are showing discouraging results in stopping the epidemic. However, the reason of the failure of
lockdown is that lockdown stops the transmission of virus without identifying the infected, but the virus starts to spread again when
reopening. Broadening testing identifies those who are infected and lowers the proportion of the infected population in the com-
munity. However, as people do not internalize the social costs of spreading the virus, they return to normal life too soon under a
lowered infection probability due to broadening testing. Hence, the two policies work together, with broadening testing lowering the
risk of infection and lockdown restricting people from returning to normal life too soon. In this part, we experiment again the rapid
and target testing with = 1/4 together with a lockdown of 30 days. Fig. 12 shows the hope to stop the epidemic as lockdown and
testing together limit the spread after reopening. The epidemic peaks at 19 March, 2020 when the lockdown starts and end at 18
April, 2020 when the lockdown ends. People return to normal life with NLI equal to 1.

Table 3
Summary - broadening testing.

Peak End Infection (End) Death Toll (End) NLI (End)

Benchmark 22-Mar-20 29-Aug-22 21,171,782 3,797,870 0.181
= 1/4 24-Mar-20 28-Jul-22 25,852,305 4,778,228 0.517
= 1/5 23-Mar-20 8-Aug-22 24,281,949 4,461,417 0.380
= 1/6 22-Mar-20 15-Aug-22 23,171,859 4,232,363 0.300
= 1/7 22-Mar-20 21-Aug-22 22,370,141 4,062,012 0.247
=M 200, 000 22-Mar-20 29-Aug-22 21,199,783 3,803,867 0.182
=M 2, 000, 000 22-Mar-20 28-Aug-22 21,425,292 3,852,764 0.191

Fig. 11. Increasing Medical Capacity Simulation, 22 January to 8 August, 2020.
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6. Robustness tests

In this section, we perform the robustness tests for the parameters of interests, namely ζ and ν. In our benchmark, we assume = 0
and = 0.5. These two parameters could have important implications on the results. We thus perform a sensitivity analysis for these
two parameters. Since ζ and ν are not policy parameters, changing their values would require a re-calibration of the model. In all the
results below, we simply re-calibrate the model using the same procedure as that for the benchmark model.

Table 4
Summary - medical capacity.

Peak End Infection (End) Death Toll (End) NLI

Benchmark 22-Mar-20 29-Aug-22 21,171,782 3,797,870 0.181
doubling ω 22-Mar-20 29-Aug-22 21,174,223 3,797,945 0.181

Fig. 12. Simulation with Lockdown and Broaden Testing, 22 January to 31 December, 2020.

Table 5
Sensitivity results on ζ.

Peak End Infection (End) Death Toll (End) NLI (End)

Benchmark 22-Mar-20 29-Aug-22 21,171,782 3,797,870 0.181
= 1/365 22-Mar-20 23-Mar-23 26,080,659 4,686,957 0.176

W.L. Ng Journal of Macroeconomics 65 (2020) 103230

14



6.1. Temporary immunity

In the benchmark simulation, we assume that = 0, meaning that whoever catch the disease and recovered are granted with
immunity forever. However, the lasting of the immunity has important implications on when the epidemic will peak and end.

If recovered individual are susceptible to the virus again in one year on average, ζ is equal to 1/365. As we can see from Table 5,
the possibility of losing immunity significantly worsens the situation. The end of the epidemic prolongs by about 7 months, and both
the number of total infection and death toll raise by more than 23%.

6.2. Relative exposure

In the benchmark, we assume equal exposure probability between outdoor consumption and working away from home with
= 0.5. In this section, we perform two experiments on ν: (1) outdoor consumption leads to more exposure, setting = 1/3, and (2)

working away from home leads to more exposure, i.e. = 2/3. From Table 6, the epidemic worsens if outdoor consumption leads to
more exposure, and the situation improves otherwise. The reason is that in the model, working from home is a substitute to com-
muting to work while there are no close substitutes to outdoor consumption. As a result, if working away from home leads to more
exposure ( = 2/3), people will rapidly switch to working from home. However, people are more reluctant to switch away from
outdoor consumption even if it has a higher exposure risk ( = 1/3).

7. Conclusion

In this paper, we have constructed an extended SIR model with agents optimally choosing outdoor activities. We calibrate the
model and match it with the data in the United States. The model predicts the epidemic in the United States very well. The coun-
terfactual experiments suggest that any single policy alone, including lockdown, broadening COVID-19 testing, and expanding
medical capacity, is not effective in tackling the epidemic. Lockdown is not as effective as many people believe because people will
optimally reduce outdoor activities if the risk of being infected is high. When the economy reopens after the lockdown, the infection
risk is low, and people respond by increasing their outdoor activities. This will negate almost all the effects brought by the lockdown
if there are still infected individuals in the community. Broadening testing gives incentives for people to return to their normal life as
fewer infected individuals are outside hanging around. However, as people do not internalize the social cost of returning to normal
life, the situation can get even worse. We also find that increasing medical capacity will only have temporary effects on reducing the
death toll. As the cost of infection decreases, more people hang around and infection increases as a result. The most effective policy is
a combination of lockdown and broadening testing: Broadening testing lowers the risks of infection, and lockdown further prevent
people from returning to normal life too early. Our result shows that a lockdown of 30 days together with a shortening of the duration
between being exposed to the virus and being tested positive from an average of nine days to four days can successfully defeat the
epidemic. Finally, under the benchmark simulation without any policy intervention, the epidemic peaks on 23 March, 2020 and ends
on 19 August, 2022. However, the epidemic will be prolonged by another seven months if recovered people lose their immunity in
one year on average.
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